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Abstract. The wave operator theory of quantum dynamics is applied to characterize coupled metastable
states. The theory extends to quasi bound states methods which are standard for dealing with bound levels.
It is shown that interacting resonances can be investigated by means of small-dimensional effective Hamil-
tonians containing all the significant information of intrinsic properties which drive the various dynamical
processes taking place. The study of the vibrational predissociation of I2Ne, mediated by intramolecu-
lar energy redistribution, illustrates the power of the method. In addition to its accuracy to determine
spectroscopic profiles and survival probabilities, it results more efficient than usual energy or time-domain
numerical calculations.

PACS. 33.40.+f Multiple resonances (including double and higher-order resonance processes, such as
double nuclear magnetic resonance, electron double resonance, and microwave optical double resonance)
– 33.80.Gj Diffuse spectra; predissociation, photodissociation – 34.30.+h Intramolecular energy transfer;
intramolecular dynamics; dynamics of van der Waals molecules

Introduction

In many areas of physics, transitory excited species are
created and decay through one or several continua. The
excitation can result from collisions, for example, with
highly charged ions yielding a large variety of phenom-
ena. More specific excitations can be produced by photons.
These excited states are associated with resonances which
have been extensively studied since many years. Power-
ful approaches have been developed which deal essentially
with continuum functions, the close-coupling method be-
ing among the most widely used. Isolated resonances are
usually associated with Lorentzian shapes characterized
by their energy and width while much more intriguing
shapes can be found for interacting resonances. This com-
plexity reflects a dynamical evolution imprinted by the
competition between reversible and irreversible processes
corresponding to interactions between resonances and con-
tinua. Thus a rich variety of situations can be found as
illustrated, in the simplest cases, by the various Fano pro-
files. The exciting interplay between reversibility and irre-
versibility is of paramount importance for the theory and
challenges the various approaches.

Interacting resonance states will be investigated in the
framework of the theory of wave operators [1] and effective
Hamiltonians. For bound states, one arrives to effective
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Hamiltonians whose diagonalization leads to exact ener-
gies [2,3]. The theory was recently extended to dynamics
and applied to isolated resonances [4]. The aim of this let-
ter is to demonstrate how powerful is this approach for
interacting resonances. It is not only efficient as compared
with usual methods (close coupling, wave packet propa-
gation...) to get accurate results for spectroscopy (absorp-
tion spectra) and dynamics (survival probabilities), but
also provides, from the effective Hamiltonian, the intrin-
sic properties of the resonances. In our method, the wave
operator establishes a one-to-one correspondence between
n states of a model space and n solutions which are sim-
ilar to the Gamow-Siegert states. In turn, Møller wave
operators of scattering theory establish a one-to-one cor-
respondence between plane waves and exact solutions [5].

The basic theory is briefly described in the following
two sections, where the definition of the dynamical quan-
tities of interest is also included. A numerical application
to coupled resonances in the fragmentation of a van der
Waals two-dimensional model system is given in the last
section, the corresponding results being analyzed and dis-
cussed.

The effective resolvent

The wave operator theory of quantum dynamics focuses
on projections of the resolvent onto a small-dimensional
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model space which contains the states which play an im-
portant role in the physical processes [1,4]. The model
space is spanned by zero–order orthonormal quasi bound
states {|φi〉} , i = 1, 2, ...n corresponding to the reso-
nances. The projected resolvent, or effective resolvent, is
written in the form

P0
1

z −HP0 =
P0

z −Heff(z)
· (1)

P0 is the projector onto the model space:

P0 =
n∑
i

|φi〉〈φi|; 〈φi|φj〉 = δij ; i, j = 1, 2, ...n. (2)

z is the variable energy extended in the complex plane.
H is the Hamiltonian of the system and Heff(z) is the
effective Hamiltonian defined in the model space. In the
right-hand side of equation (1), the shorthand notation
P0/(z − Heff(z)) means the inversion of the operator
(z−Heff(z)) in the model space. Projected resolvents were
previously investigated by many authors most often by
using partitioning techniques [6–10]. However, many de-
velopments remained rather formal, using simple models,
without producing efficient computational schemes.

The effective Hamiltonian defined through equa-
tion (1) is energy-dependent and non-Hermitian. How-
ever it becomes meaningful when it depends as less as
possible on the energy. For example, in the case of sharp
resonances, the main structure of the projected resolvent
is numerically dominated by a few poles in the second
Riemann sheet (Im(z) < 0) and the z-dependence can be
neglected. This hypothesis corresponds, for isolated reso-
nances, to Breit-Wigner profiles and exponential decays.
This assumption concerning the energy dependence will
be further considered for the case of two interacting reso-
nances investigated in this letter. Under this assumption,
the effective Hamiltonian may formally be expressed as

Heff =
n∑
i=1

Ei |ψi)(ψi|; (3)

(ψi|ψj) = δij ; i, j = 1, 2, ..., n. (4)

n is the dimension of the model space. The n eigenvalues
Ei are complex energies corresponding to exact poles, and
the representation of Heff becomes a n-dimensional com-
plex symmetric matrix. We have denoted by ( | ) the sym-
metric inner product [11]. The spectroscopic and dynam-
ical observables proceed immediately from equation (3).
We define the relevant (projected) density of states corre-
sponding to an initial state |φ〉 and belonging to the model
space by

ρ(E) = − 1
π

Im
〈
φ

∣∣∣∣ P0

E −Heff

∣∣∣∣φ〉 (5)

= − 1
π

Im
n∑
i=1

c2i
E −Ei

; ci = (ψi|φ). (6)

E = Re(z) is the energy on the real energy axis. Hereafter
we will use the term density of states for ρ(E) instead

of relevant (projected) density of states. The probability
amplitude of remaining in the initial state, at time t, is
given by the autocorrelation function

c(t) =
1

2πi

∫
C

〈
φ

∣∣∣∣ P0

z −Heff

∣∣∣∣φ〉e
−iz
~ t dz (7)

=
n∑
j=1

cj e
−iEj
~ t, (8)

whose modulus squared provides the survival probability
of the |φ〉 state along time. The contour C runs from +∞
to −∞ on the real-energy axis.

Computation of the effective Hamiltonian

The key point of the method is the computational determi-
nation of the effective Hamiltonian which may be written
in the form

Heff(z) = P0HΩ(z). (9)

The wave operator is given by

Ω(z) = P0 +
Q0

z −HHP0 , (10)

where Q0 is the projector onto the space which is or-
thogonal to the model space, i.e., Q0 + P0 = 1 and
Q0P0 = 0. Again, Q0/(z − H) is a shorthand notation
of Q0(z − H)−1Q0. Expression (9) shows that, as for
bound states, the calculation of an effective Hamiltonian
requires the preliminary determination of the wave opera-
tor. To this end, we have used in this work a perturbation-
iteration method which includes analytical continuation
by means of an optical potential, leading to a complex-
symmetric Hamiltonian matrix [12]. The procedure re-
quires a computational effort proportional to nN2, where
n is the dimension of the model space and N is the di-
mension of the large matrix representing the Hamiltonian.
The numerical efficiency of the method is strengthened
by the performance of an iterative code which enables to
determine several inner eigensolutions of large complex-
symmetric matrices [13].

Numerical application in a two-dimensional
realistic case

Interacting resonances can be found in van der Waals com-
plexes, for example, when Intramolecular Vibrational Re-
laxation (IVR) interplays with fragmentation. These com-
plexes are representative of molecular systems bound by
heterogeneous interactions, e.g., those formed by a conven-
tional chromophore such as I2, Br2 or Cl2 (at a vibrational
level labelled by v) which is surrounded by one (or several)
rare gas atom(s) loosely bound by van der Waals forces.
Such systems are extensively experimentally studied: typ-
ically, after an optical excitation preparing the diatomic in
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Fig. 1. Quasi bound states and continua in I2Ne (T shape).
v labels the vibrational levels related to the I–I coordinate and
n those of the Ne–I2 coordinate. |35, 0〉 and |34, 4〉 are the two
resonance states investigated in this paper.

a precise electronic and vibrational state, there is a trans-
fer of one or several vibrational quanta to the weak bond
and the rare gas atom eventually evaporates [14]. For the
lowest vibrational diatomic levels, the resonances are well
isolated; they become coupled (IVR) typically near the
closing threshold, that is, when at least two vibrational
quanta must be released for the evaporation. We have con-
sidered here the high vibrational levels v = 34, 35 of the
I2Ne system in T shape and excited to the B electronic
state of I2. The resonance states are labeled |v, n〉, n being
the quantum number associated with the Ne–I2 stretching
motion. As illustrated in Figure 1, we have a quite generic
example of two interacting resonances. The |φ1〉 = |35, 0〉
and |φ2〉 = |34, 4〉 states are nearly degenerate and cou-
pled to various quasi bound states and continua. Such
a picture is frequently found in molecular physics (diex-
cited Rydberg states, collision with highly charged ions,
nonadiabatic transitions...). The two resonance states |φ1〉
and |φ2〉, spanning the model space of dimension n = 2,
will be investigated by using wave operators and effective
Hamiltonians.

In the numerical application, the bidimensional Hamil-
tonian is written down in Jacobi coordinates. Regarding
the potential, it is described as an addition of pairwise
analytic interactions [15]. We used a basis set of 10 vi-
brational states for I2 (v = 28−37) and a discrete vari-
able representation (DVR) grid with 300 points for the
coordinate describing the vibrational motion of Ne in the
field of I2, leading to N = 3 000, the size of the large
matrix representing the Hamiltonian. The computational
scheme avoids the diagonalization of the full Hamiltonian
matrix which would require a computational time propor-
tional to N3. Analytical continuation was done by adding
a Complex Absorbing Potential (optical potential) in the
dissociative coordinate [16]. Analytic continuation is also
used in various approaches such as complex scaling [17] or
CAP/CI [18]. As discussed above, the calculations were
performed under the assumption that the effective Hamil-
tonian did not depend on the energy. The effective Hamil-
tonian Heff(z) was constructed for the value z = 67 cm−1

which is near the mean energy of the two resonances. We
have checked that the observables do not depend on this
choice and that they are also independent, at large ex-
tent, on the parameters of the absorbing potential. A nice
advantage of the present approach is that it can handle
simultaneously two or, in general, several interacting res-

Table 1. Three matrix representations of the effective Hamil-
tonian: (a) in the basis |φ1〉 = |35, 0〉, |φ2〉 = |34, 4〉. (b) In
the representation which cancels the real part of the coupling.
(c) in the diagonal representation which provides the poles of
the Green operator (Siegert states). All matrix elements are
in cm−1.

(a)

 
−68.20 − i 0.82 −1.21− i 0.07

−1.21 − i 0.07 −67.63− i 0.02

!

(b)

 
−69.19 − i 0.58 i 0.37

i 0.37 −66.67− i 0.25

!

(c)

 
−69.16 − i 0.59 0

0 −66.73− i 0.25

!

onances and provides within a unified scheme both the
density of states which can be compared with spectro-
scopic data and the associated autocorrelation functions
which describe the dynamics.

In the following, the initial state |φ〉 may be any nor-
malized linear combination of |φ1〉 and |φ2〉. Although in
the present case only |φ〉 = |φ1〉 is a realistic choice be-
cause the transition dipole is a flat function of the Ne–I2

coordinate, we will consider four cases to illustrate gen-
eral situations. Let us examine the physical information
contained in the effective Hamiltonian for the three rep-
resentations (a), (b) and (c) reported in Table 1. The
complex symmetric matrices are the fingerprints of the
underlying dynamics of the decaying resonances. In
the basis of the states |φ1〉 and |φ2〉, the matrix represen-
tation (a) shows that the static interaction between the
two states is about 1 cm−1 which is much larger than the
imaginary part −0.07 cm−1 of the coupling. The diagonal
representation (c) provides the complex energies of the
Siegert states specifying their position and width, while
the intermediate representation (b) gives the most illus-
trative representation describing the system in terms of
two dynamically weakly-coupled resonances. In represen-
tation (b) the real part of the coupling was suppressed by
a real rotation of the basis functions |φ1〉 and |φ2〉 within
the model space. The remaining purely imaginary interac-
tion term characterizes the coupling through the continua
between the two resonances [19] whose energies and widths
remain close to those of the Siegert states. This imaginary
term measures the deviation from Lorentzian profiles and
therefore contains a true physical information. As usual
when mainly one continuum channel is involved in the
dissociation, v = 33 in the present case, its value is very
close to the square root of the product of the two widths.
Thus the dynamics of these van der Waals states can be
described in terms of two weakly-interacting resonances,
the parameters of which were here directly extracted from
the Hamiltonian without any empirical or semiempirical
parameterization [19]. In textbooks, resonances are often
investigated by means of model Hamiltonians with real
coupling terms whereas, from our study, a purely imag-
inary coupling emerges which can be obtained only by
analytical continuation [20].
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Fig. 2. Density of states for four initial conditions: (a) |φ〉 =
|φ1〉, (b) |φ〉 = |φ2〉, (c) |φ〉 = (|φ1〉+|φ2〉)/

√
2, (d) |φ〉 = (|φ1〉−

|φ2〉)/
√

2. Full line: effective resolvent method, equations (5, 6);
dotted line: close-coupling calculation.

Since our approach provides simultaneously data rel-
evant for spectroscopy and for dynamics, we have repre-
sented on the same footing in Figures 2 and 3, the density
of states and the moduli of the associated autocorrela-
tion functions proceeding from four distinct initial con-
ditions. We have clearly non-Lorentzian shapes related to
non-exponential decays. The effective resolvent results are
compared, in Figure 2, to accurate close-coupling calcu-
lations [21] in the energy domain (absorption spectrum)
and, in Figure 3, to a direct determination of the autocor-
relation function from wave packet propagations in the
time domain [22]. There is an excellent agreement be-
tween the results obtained independently by the various
methods, the small discrepancies coming essentially from
computational details. This agreement illustrates the nu-
merical accuracy of our method and grounds it for other
realistic applications.

About the computational cost, it is the lowest for the
present method where the main effort consists in calculat-
ing the wave operator, which has taken about 10 minutes
on a personal computer. A similar time was necessary for
the close-coupling calculation but at each initial condi-
tion and it do not yield the dynamics, whereas the wave
packet propagation, performed with a usual optimized
Chebyshev propagator, required several hours. Therefore
our approach combines the advantages of the smallest
computational effort and the above underlined capabilities
of a direct interpretation of spectroscopic and dynamical
observables.

Conclusions

Unlike scattering theory which privileges asymptotic
states and phase shifts due to the resonances and continua,
our approach focuses on localized quasi bound states. The
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Fig. 3. Modulus of the autocorrelation function for the
four initial conditions of Figure 2. Full line: effective re-
solvent method, equations (7, 8); dotted line: wave packets
propagation.

theory, the computational techniques and the interpreta-
tion schemes are a direct generalization of standard meth-
ods which were found to be so successful for bound states.
The method of moments (Lanczos recursion algorithm)
provides also stable and accurate results and is able to de-
termine many interacting resonances. Our method is also
general. Besides the two resonances presented above, it
was easy to extend the calculations to several resonances
and their couplings arising from many quasi bound states
in I2Ne. We do not present them here, because it does not
essentially provide any new information. The methods of
moments basically use repeated matrix by vector multi-
plications without any discrimination among the energies.
A great computational advantage of the perturbation-
iteration method with respect to the method of moments,
or similar methods, is that the number of iterations is
typically 20, instead of, for example, several thousands re-
ported in reference [23], where, however, many more res-
onances were determined. An important interest of our
approach is to focussed the calculation on a restricted
number of resonances, almost without loss of accuracy. In
conclusion, the power of the method is to combine com-
putational efficiency with the simultaneous determination
of the main observables characterizing the resonances in
the energy range of interest. In addition, the effective re-
solvent produces appealing physical insight. Therefore, we
consider that the method offers an elegant and efficient al-
ternative to the usual close-coupling and time-dependent
wave-packet approaches.

We acknowledge support by the CNRS (France) and the CSIC
(Spain) under the collaboration 2000FR0029.
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